Set No. 1

Question Booklet No.

14U/115/10(i)

	110/12	
(To be filled up by the	candidate by blue/black ball-poin	t pen)
Rell No.		
Rell No. (Write the digits, in word		***************************************
Serial No. of OMR Answer Sheet	(Signature of Invigilator)	
Day and Date	***************************************	(Signature of the

INSTRUCTIONS TO CANDIDATES

(Use only blue/black ball-point pen in the space above and on both sides of the Answer Sheet)

1. Within 10 minutes of the issue of the Question Booklet, check the Question Booklet to ensure that it contains all the pages in correct sequence and that no page/question is missing. In case of faulty Question Booklet bring it to the notice of the Superintendent/Invigilators immediately to obtain a fresh Question Booklet.

2. Do not bring any loose paper, written or blank, inside the Examination Hall except the Admit Card without its

3. A separate Answer Sheet is given. It should not be folded or mutilated. A second Answer Sheet shall not be provided. Only the Answer Sheet will be evaluated.

Write your Roll Number and Serial Number of the Answer Sheet by pen in the space prvided above.

5. On the front page of the Answer Sheet, write by pen your Roll Number in the space provided at the tap and by darkening the circles at the bottom. Also, wherever applicable, write the Question Bookiet Number and the Set Number in appropriate places.

6. No overwriting is allowed in the entries of Roll No., Question Booklet no. and Set no. (if any) on OMR sheet and Roll No. and OMR sheet no. on the Queston Booklet.

7. Any change in the aforesaid entries is to be verified by the invigilator, otherwise it will be taken as

8. Each question in this Booklet is followed by four alternative answers. For each question, you are to record the correct option on the Answer Sheet by darkening the appropriate circle in the corresponding row of the Answer Skeet, by pen as mentioned in the guidelines given on the first page of the Answer

9. For each question, darken only one circle on the Answer Sheet. If you darken more than one circle or darken a circle partially, the answer will be treated as incorrect.

10. Note that the answer once filled in ink cannot be changed. If you do not wish to attempt a question, leave all the circles in the corresponding row blank (such question will be awarded zero marks).

11. For rough work, use the inner back page of the title cover and the blank page at the end of this Booklet.

12. Describe with Account Sheet at the end of the Test.

12. The second published to leave the Examination Hall until the end of the Test.

Mote attempts to use any form of unfair means, house shall be liable to such punishment as the University may determine and impose on him/her.

Total No. of Printed Pages : 56

ROUGH WORK एक कार्य

No. of Questions: 150

प्रश्नों की संख्या : 150

Time: $2\frac{1}{2}$ Hours

Full Marks: 450

समय : $2\frac{1}{2}$ घण्टे

पूर्णाङ्क : 450

- Note: (1) Attempt as many questions as you can. Each question carries 3 (Three) marks. One mark will be deducted for each incorrect answer. Zero mark will be awarded for each unattempted question.

 अधिकाधिक प्रश्नों को हल करने का प्रयत्न करें। प्रत्येक प्रश्न 3 (तीन) अंकों का है। प्रत्येक गलत उत्तर के लिए एक अंक काटा जायेगा।
 - प्रत्येक अनुत्तरित प्रश्न का प्राप्तांक शून्य होगा।

 (2) If more than one alternative answers seem to be approximate to the correct answer, choose the closest one.

 यदि एकाधिक वैकल्पिक उत्तर सही उत्तर के निकट प्रतीत हों, तो निकटतम सही उत्तर दें।
 - (3) This paper comprises of three sections: Physics, Chemistry and Biology. Each section contains 50 questions.

यह प्रश्नपत्र तीन खण्डों का है : भौतिक विज्ञान, रसायन विज्ञान एवं जीव विज्ञान। प्रत्येक खण्ड में 50 प्रश्न हैं।

Section - I

खण्ड - 1

Physics

(Marks - 150)

01. The velocity of a particle depends upon t as V(t) = A + Bt + Ct2. If velocity is in m/s, the dimensions of A & B are:

एक कण का वेग t पर निर्भर करता है, V(t) = A + Bt + Ct2 । यदि वेग मी/से० में है तो A व B की विमायें होंगी:

- (1) MI.T-1 & MLT-2
- (2) M°LT-1 & M°LT-2
- (3) MLOT-1 & MLOT-2
- (4) [MLT^o]& [ML²T^o]
- 02. A system has basic dimension as density [D], velocity [V] & area [A]. The dimensional representation of force in this system is:

एक निकाय की मूल विमा धनत्व [D], वेग [V] तथा क्षेत्रफल [A] रखा गया है। इस निकाय में बल का विमीय सूत्र का निगमन होगा:

(1) AV2D

(2) |A2VD

(3) AVD2

- (4) A°VD
- **03.** Angle that the vector $\vec{A} = 2\hat{i} + 3\hat{j}$ makes with x-axis is:

एक वेक्टर $\vec{A} = 2\hat{i} + 3\hat{j}$, x-अक्ष से कोण बनाता है, कोण का मान है :

- (1) $\sin^{-1}\left(\frac{3}{2}\right)$ (2) $\tan^{-1}\left(\frac{2}{3}\right)$ (3) $\sin^{-1}\left(\frac{2}{3}\right)$ (4) $\tan^{-1}\left(\frac{3}{2}\right)$

04. A particle of mass $\left(\frac{M}{2}\right)$ is circulating on the circle of radius r having angular momentum L, then the centripetal force will be:

 $\left(\frac{M}{2}\right)$ द्रव्यमान के एक कण का r त्रिज्या के वृत्त पर घूमते हुए कोणीय संवेग -L है। कण का अभिकेन्द्र बल होगा :

(1)
$$\frac{2L^2}{Mr}$$
 (2) $2L^2\frac{M}{r}$ $\sqrt{2L^2\over Mr^3}$ (4) $\frac{L^2}{Mr^3}$

05. Two masses A & B each of mass M are fixed together by a massless spring. A force F acts on the mass B. At the instant shown the mass A has acceleration a. What is the acceleration of mass B? द्रव्यहीन स्प्रिंग द्वारा दो M द्रव्यमान A तथा B आपस में जुड़े हैं। एक बल F द्रव्यमान B पर कार्य करता है। द्रव्यमान A पर तुरन्त त्वरण a चित्र के अनुसार लगता है। द्रव्यमान B का त्वरण क्या होगा ?

A
$$-60000$$
 F

(1) $\left(\frac{F}{m}\right) - a$ (2) $a - \left(\frac{F}{m}\right)$ (3) $\left(\frac{F}{m}\right) - 2a$ (4) $2a - \left(\frac{F}{m}\right)$

06. A false balance has equal arms. An object weight w, when placed in one pan & w₂ when placed in the other pan. The true weight w of the object is:

एक त्रुटि-पूर्ण तराजू की मुजाएँ बराबर हैं। एक वस्तु का भार तराजू के एक पैन पर रखने पर w₁ तथा तराजू के दूसरे पैन पर रखने पर w₂ आता है। वस्तु का साराविक भार w होगा:

(1)
$$\sqrt{w_1w_2}$$
 (2) $\sqrt{w_1^2+w_2^2}$ (3) $\frac{(w_1+w_2)}{2}$ (4) $\frac{2w_1w_2}{(w_1+w_2)}$

07. The human heart discharges 75 cc of blood through arteries at each beat against an average pressure of 10 cm of Hg. Heart beat is 72 per minute calculate the rate of working of heart in Watt ($p_{Hg} = 13.6 \text{ gm}$)

मरकरी दाब 10 सेमी के विपरीत मुनष्य का हदय 75 cc रक्त प्रत्येक थड़कन के साथ धमनी में छोड़ता है। हृदय की धड़कन 72 प्रति मिनट है। हृदय के कार्य करने की दर की गणना वाट में कीजिए। ($\rho_{\rm Hg}$ = 13.6 gm/cc).

(1) 1.19 W

(2) 2.29 W

(3) 3.39 W

(4) 4.49 W

08. What will be the depth of water in a tank so that the volume of air bubble get double from the bottem to surface ? [$p_{He} = 13.6 \text{ gm/cm}^3$, 1 atm = 76 cm. of Hg |

(1) 5.28 m

(2) 10.34 m

(3) 15.67 m

(4) 20.86 m

वायु का एक बुलबुला पानी के तह से ऊपर आने पर दो गुना आयतन का हो जाता है तो टैंक में पानी की गहराई क्या होगी ? (🎤 * 13.6 ग्राम/सेमी³, 1 वायुदाब = 76 सेमी पारा)

(1) 5.28 मीटर

(2) 10.34 मीटर

(3) 15.67 **मीटर**

(4) 20.86 मीटर

09. A 3 HP motor requires 2.4 KW to drive it. Its efficiency is about :

एक 3 हार्सपावर मोटर को चलाने के लिए 2.4 किलोबाट शक्ति की जरूरत होती है। इसकी क्षमता लगभग होगी:

(1) 50%

(2) 60% (3) 70%

(4) 90%

10. What is the mass of an electron moving with a velocity of 0.6 c interms of the electronic rest mass mo?

एक इलेक्ट्रान 0.6 c वेग से गतिमान है तो उस इलेक्ट्रान का द्रव्यमान स्थिर द्रव्यमान m_o के रूप में क्या होगा ?

(1) $\left(\frac{4}{5}\right)m_0$ (2) $\left(\frac{5}{4}\right)m_0$ (3) $\left(\frac{3}{5}\right)m_0$ (4) $\left(\frac{5}{3}\right)m_0$

- 11. The potential energy u(x) of a particle executing SHM is given by :
 - (1) $u(x) = \frac{K}{2}(x-a)^2$
- (2) $u(x) = k_1 x + k_2 x^2 + k_3 x^3$
- (3) $u(x) = A \exp(-bx)$ (4) u(x) = constant

सरल आवर्त गति करते हुए एक कण की स्थितिज ऊर्जा u(x) होगी :

- (1) $u(x) = \frac{K}{2}(x-a)^2$ (2) $u(x) = k_1x + k_2x^2 + k_3x^3$
 - (3) $u(x) = A \exp(-bx)$
- (4) u(x) =नियतांक
- 12. The two SHM are given by: $y_1 = a \sin \left[\left(\frac{\pi}{2} \right) t + \phi \right]$ and $y_2 = b \sin \left[\left(\frac{2\pi t}{3} \right) + \phi \right]$. The phase difference between these after 1 second is :

दो सरल आवर्त गति को समीकरण से दिया है : $y_1 = a \sin \left| \left(\frac{\pi}{2} \right) 1 + \phi \right|$ तथा $y_2 = b \sin \left[\left(\frac{2\pi t}{3} \right) + \phi \right]$. 1 सेकण्ड के बाद दोनों का कलान्तर होगा :

- (2) $\frac{\pi}{2}$ (3) $\frac{\pi}{4}$ (4) $\frac{\pi}{6}$
- 13. A body of mass 'm' is moved to a height equal to the radius of the earth 'R'. The increase in its potential energy is :

'm' द्रव्यमान का एक पिण्ड पृथ्वी के त्रिज्या 'R' के बराबर ऊँचाई तक जाता है। गुरुत्वीय ऊर्जा में वृद्धि होगी: (2) 2 mgR (3) $\left(\frac{1}{2}\right) \text{ mgR}$ (4) $\left(\frac{1}{4}\right) \text{mgR}$

14. If 'r' represents the radius of the orbit of a satellite of mass 'm' moving round a planet of mass 'M'. The velocity of the satellite is given by :

'm' द्रव्यमान का उपग्रह 'r' कक्षा में 'M' द्रव्यमान के ग्रह के खारी ओर चक्कर लगाता है। उपग्रह की गति होगी :

(1)
$$v^2 = \frac{Gm}{r}$$
 (2) $v^2 = \frac{GMm}{r}$ (3) $v = \frac{GM}{r}$ (4) $v = \frac{Gm}{r}$

(3)
$$v = \frac{GM}{r}$$

$$(4) \quad v = \frac{Gm}{r}$$

15. In English the phrase 'tip of the iceberg' is used to mean a small visible fraction of something that is mostly hidden. For real ice-berg what is this fraction if the density of sea water is 1.03 gm/cc and that of ice is 0.92 gm/cc?

अंग्रेजी की एक कहावत 'टिप ऑफ आइसबर्ग' का अर्थ यह होता है कि किसी छुपे हुए पदार्थ का थोड़ा-सा अंश का दिखना। यदि समुद्र के अल का चनत्व 1.03 ग्रा/से³ तथा आइस का घनत्व 0.92 ग्रा/से³ हो, तो वास्तविक आइसबर्ग का कितना भाग दिखता है ?

16. A block of wood floats in water with two-third of its volume submerged. In oil the block floats with 0.90 of its volume submerged. What will be density of oil ? [$\rho_w = 10^3 \text{kg/m}^3$]

एक लकड़ी का दुकड़ा पानी मैं दो-तिहाई आयतन अन्दर के साथ तैरता है। तेल के अन्दरं 0.90 आयतन अन्दर से तैरता है। तेल का धनत्व क्या होगा ? (A = 103 किया /मी3)

(I) 530 Kg/m³

(2) 740 Kg/m³

(3) 630 Kg/m³

(4) 880 Kg/m³

^{(4) 20.6%}

17. A vessel contains liquid of density p as shown. The gauge pressure at point P is:

चित्रामुसार एक बर्तम में 🔎 धनत्व का द्रव है। बिन्दु Pपर द्रव का दाब होगा?

(1) h ₽ g

(2) H P g

(3) (H - h) P g

- (4) (H h) ₽ g cosθ
- 18. To get the maximum flight, a ball must be thrown as : अधिकतम उड़ान के लिए, गेंद को किस दशा में प्रक्षेपित करना चाहिए ?

 leav	Water from inside the earth rises through the trunk of a big tree to leaves high-up. The main reasen for this is:						
(1)	Capillary Action		High viscosity of water				
(3)	Gravitational force	(4)	Evaporation of water				
पृथ्वी मुख्य	के अन्दर से पानी पेड़ों की कारण क्या है ?	पत्तियों तक	पहुँचता है तनों के सहारे। इसका				

(1) कोशिकत्व

(2) जल का अधिक श्यान होना

(3) गुरुत्वाकर्षण बल

(4) जल का वाष्पन

20. The energy needed in breaking a drop of radius 'R' into 'n' drops of radius 'r' is :

एक बड़ी बूँद त्रिज्या 'R' के 'n' छोटी 'r' त्रिज्या के बूँदों में तोड़ने के लिए ऊर्जा की आवश्यकता होती है :

(1)
$$(4\pi r^2 n - 4\pi R^2)T$$
 (2) $\frac{(4\pi R^2 - 4\pi r^2)}{T}$

(3)
$$\left[\left(\frac{4}{3} \right) \pi r^3 - \left(\frac{4}{3} \right) \pi R^3 \right] T$$
 (4) $\frac{\left(4\pi R^2 - n 4\pi r^2 \right)}{T}$

21. A dog barking delivers about I m W of power. If this power is uniformly distributed over a hemispherical area, what is the sound level at a distance of 5 m?

भींकता हुआ कुत्ता 1 मी० वाट शक्ति उत्पन्न करता है। यदि यह शक्ति एक समान रूप से अर्थगोलाकार क्षेत्र में फैलता है तब 5 मी० की दूरी पर ध्वनि का स्तर क्या होगा ?

- (1) 10 dB
- (2) 38 dB
- (3) 58 dB
- (4) 68 dB

22. The temperature at which speed of sound in air becomes double of its value at 27° C? वायु में क्विनि की चाल 27° C के ताप की तुलना में किस ताप पर दुगुना हो ंजायेगाः 🕄 (4) , -123°C (3) 927°C (2) 327°C (1) 54°C 1. 23. A wire of density 9 × 103 Kg/m3 is stretched between two clamps 1m apart and is subjected to an extension of 4.9 * 104 m. What will be the lowest frequency of vibration in wire? (4) 55 Hz (2) 35 Hz (3) 45 Hz (1) 25 Hz 9 × 103 किया /मी3 घनत्व के तार को 1 मीटर की दूरी पर दो खूँटियों के बीच ताना गया और इसमें 4.9 × 10⁴ मी० वृद्धि हो गयी। तार की सबसे कम आवृत्ति क्या होगी ? (2) 35 हर्ट्ज (3) 45 हर्ट्ज (4) 55 हर्ट्ज (1) 25 हर्ट्ज 24. The wavelength of light coming from a distant galaxy is found to be 0.5% more than that coming from a source on earth. What is the velocity of galaxy? (2) 1.0 × 106 m/sec (1) 0.5 × 106 m/sec (4) 2.0 × 106 m/sec (3) 1.5 × 106 m/sec दूर के आकाशगंगा से आने वाले प्रकाश का सरंगदैर्ध्य 0.5% ज्यादा हो जाता 25. In open organ pipe the fundamental note is produced when its length is :

खुले आर्गन पाइप में मूल नोट उत्पन्न होता है जब इसकी लम्बाई है :

- (2) $\frac{\lambda}{2}$ (3) $\frac{3\lambda}{4}$
- (4) h

26. A sphere of diameter 7cm and mass 266.5 gm floats in a bath of liquid. As the temperature is raised, the sphere begains to sink at temperature of 35°C. If the density of the liquid is 1.527 gm/cc at 0°C, find the coefficient of cubical expansion of the liquid. Neglect the expansion of the sphere.

7 सेमी व्यास तथा 266.5 ग्राम द्रव्यमान का एक गोला द्रव में तैरता है। जैसे ताप बढ़ रहा है गोला डूबना प्रारम्भ कर रहा है और 35°C पर डूब जा रहा है। 0°C ताप पर द्रव का धनत्व 1.527 ग्राम ⁄से हो, तो द्रव का आयतन प्रसार गुणांक प्राप्त कीजिए। गोला का आयतन प्रसार गुणांक नगण्य है।

(1) 3.5 × 10⁻⁴/°C

(2) 5.5 × 10⁻⁴ /°C

(3) 6.5 × 10⁻⁴ /°C

(4) $8.5 \times 10^{-4} / {}^{\circ}\text{C}$

27. Two plates each of area A, thickness L, and L, and thermal conductivities K, and K2 respectively are joined to term a single plate of thickness (L1 + L2). If the temperatures of the tree surfaces are T1 & T, what is the rate of flow of heat?

दो प्लेटों प्रत्येक का क्षेत्रफल A, मोटाई L, तथा L, और ऊष्मा चालकता K, तथा $\mathbf{K}_{_2}$ को जोड़ कर एक ही प्लेट मोटाई $(\mathbf{L}_{_1}+\mathbf{L}_{_2})$ का बनाया जाता है। यदि स्वतन्त्र पृष्टों का तापमान T, तथा T, हो तो ऊष्मा प्रवाह का दर क्या होगा ?

(1)
$$\begin{bmatrix} A(T_1 - T_2) \\ L_1 + L_2 \\ K_1 + K_2 \end{bmatrix}$$
 (2) $\begin{bmatrix} A(T_1 + T_2) \\ L_2 + L_2 \\ K_1 + K_2 \end{bmatrix}$ (3) $\begin{bmatrix} L_1 + L_2 \\ K_1 + K_2 \end{bmatrix}$ (4) $\begin{bmatrix} L_1 + L_2 \\ K_1 + K_2 \end{bmatrix}$

28. The variation of PV with V of a fixed mass of an ideal gas at constant temperature is graphically represented by the curve :

एक नियत मात्रा के आदर्श गैस एक नियत तापमान पर PV तथा V का विचलन किस ग्राफ से दिखाया जाता है ?

29. A thin rod of length (f/3) is placed along the principal axis of a concave mirror of focal length 'f' such that its image, which is real & elongated. What is magnification?

एक पतली (f/3) लम्बाई की छड़ अवतल दर्पण के मुख्य अक्ष के सापेक्ष रखी गयी है। प्रतिबिम्ब वास्तविक तथा बड़ा बना है। आवर्धन क्या होगा ? (। अवतल दर्पण की फोकस लम्बाई)।

(1) - 3/2

1

- (2) 2/3 (3) 3/2

30.	. The Sun (diar concave mirro the Sun forme	r of fo	cal length 'f'	. Wh			t the pole of a of the image of
	'िफोकस वाले बनाता है। दर्पण	अवतल १ द्वारा	दर्पण के पोर बने सूर्य के	, पर प्रतिनि	सूर्य (व्यास, व बेम्ब का व्यास	l) θ [:] क्या	रे डियन का कोण होगा ?
	(1) e/f	(2)	θ_{t}	(3)	t ₀	(4	
31.	Deviation δ prissing is given by :	oduce	d by a prism	of re	fractive inde	χμδι	small angle A
	अपवर्तनांक μ त (1) δ=(μ—1)A						
32.	Loss of the abil						
2	(1) Presbyopia (3) Hypermetr			0-20000	Astigmatism Myopia	n.	e s ^a g
32	बढ़ते उम्र के सा आँख द्वारा खत्म (1) प्रेसबायोपिया	ं थ निव होती	जाती है, इसे	की व अहर्त	स्तुओं को फोर ने हैं :		1
33 .	The work functi						20
	length in nm for sodium. [h = 6.0	r the li	ight that will	cau	se photoelect	rons	emitted from
	(1) 450 nm		330 nm		440 nm	(4)	540 nm

200	सोडियम का कार्यफलन 2.3 इलेक्ट्रान-वोल्ट है। प्रकाश का अधिकतम तरंग-							
	वैर्ध्य नैनी मीटर में कितना होगा जिससे फोटोइलेक्ट्रान सोडियम से उत्पन्न कर							
	सके ?							
\$1.	[h = 6.6 × 10 ⁻³⁴ जू०से०, c = 3 × 10 ⁸ मी० ∕ से०]							
	(1) 450 취리되 으 (2) 330 취리되으							
	(3) 440 नैनोमी० (4) 540 नैनोमी०							
34 .	Light is polarised to the maximum, when the incident angle on the							
	glass surface is:							
	किस आपतित कोण के लिए प्रकाश का धुवण शीशे की सतह पर अधिकतम							
	होगा ?							
	(1) 57° (2) 67° (3) 53° (4) 37°							
35.	Bragg's equation will have no solution if :							
	ज्ञाग का समीकरण इल नहीं किया जा सकता अगर :							
	(1) $\lambda < d$ (2) $\lambda < 2d$ (3) $\lambda < \left(\frac{d}{2}\right)$ (4) $\lambda > 2d$							
36.	The force of attraction between two co-axial electric dipoles whose							
	centres are r meter apart varies with distances as :							
	र पूरी पर दो उभय अक्षीय वैद्युत क्रिधुवों के बीच लगने वाला आकर्षण बल							

परिवर्तित होगा :

(II) 5⁻⁸, (I-

140/115/10(1)

37.	charge 'q' is a	given to	the assem	ibly t	≥ are conni he charge i	ected in a on the op	parallel. If a pacitor C, to
	दो संधारित्र C_1 ऐसेम्बली में $q < C_2$ पर होगा :	तथा C ₂ आवेश दि	आपस में या जाता है,	समान्त् , तो ः	ार क्रम में आवेश का वि	जुड़े हैं। य वेतरण संघ	दि दिये गरे गरित्र C, तथ
	(1) C ₁ /C ₂	(2)	C ₂ /C ₁	(3)	C, C,	(4)	$\frac{1}{C_1C_2}$
38.	A condenser of equal to :	of capac	ity 50 μF	is cl	narged to 1	0 volt. It	s energy is
	(1) 2.5 m J एक 50 μF के व होगी:	(2) (संधारित्र व).25 m J को 10 योल्ट	(3) 帝 3	50 m J ग वैशित किया	(4) (जाती है।).125 µ J इसकी ऊर्जा
	(1) 2.5 मिली जु	ल		(2)	0.25 मिली	जल	
	(3) 50 मिली जू	• • • • • • • • • • • • • • • • • • • •	į.		0.125 माइः		ж
39,	Given three eq these three res	ual resi	stances. H s can be m	low n	n aný differe	nt comb	i nsti ons of
	तीन बराबर के प्र प्रतिरोध, तीन प्र	तिरोध वि तिरोधों ड	ये हैं। कितन तरा तैयार	ने अल किया	ग-अलग सम् जा सकता	ह के रूप ?	में एक नया
	(1) 6	(2) 5		(3)	4	(4) 3	
40.	By how many p drops by 1% ?	ercenta	ge the pow	er in a	a lamp decr	cases if t	he current
1	एक लैम्प में प्रधारि केतने प्रतिशत घ	हेत होने : ट जायेग	वाला करेंट ' ?	यदि ।	% घटा दिया	जाये तो उ	उसका पावर
ال.	(ł) 2%	(2) 49	6	(3)	1.01%	(4) 19	%

- 41. The time required for 1 KW heater to raise the temperature of 10 litre of water through 10°C is: (4) 1000 sec. (3) 840 sec. (2) 420 sec. (1) 210 sec. 10 लीटर पानी का ताप 10°C तक बढ़ाने में 1 किलोवाट हीटर द्वारा कितना समय लगेगा ? (1) 210 सेकण्ड (2) 420 सेकण्ड (3) 840 सेकण्ड (4) 1000 सेकण्ड 42. In producing chlorine through electrolysis 100 KW power at 125 V is being consumed. How much chlorine per minute is liberated? [E.C.E. for chlorine is 0.367 × 10-6 Kg/c] (2) 27.6 gm (3) 37.8 gm (4) 48.8 gm (1) 17.6 gm 100 किलोवाट शक्ति तथा 125 वोल्ट वाले इलेक्ट्रोलाइसिस द्वारा क्लोरीन पैदा करना है। इससे प्रति मिनट कितना क्लोरीन उत्पन्न होगा ? (क्लोरीन का ई०सी०ई० = 0.367 × 10⁻⁶ किग्रा /c) (2) 27.6 ग्राम (3) 37.8 ग्राम (4) 48.8 য়াশ (1) 17.6 知中 43. A magnet makes 5 oscillations per minute in earth's magnetic field
 - 43. A magnet makes 5 oscillations per minute in earth's magnetic field (H = 0.3 gauss). By what amount should the field be increased so that the magnet makes 10 oscillates per minute?

 पृथ्वी के चुम्बकीय क्षेत्र (H = 0.3 gauss) में एक चुम्बक 5 दोलन प्रति मिनट करला है। चुम्बकीय क्षेत्र के मान में कितना वृद्धि किया जाय कि चुम्बक का दोलन प्रति मिनट 10 हो जाय?

 (1) 0.3 gauss (2) 0.6 gauss (3) 0.9 gauss (4) 1.2 gauss

44. A 50 W, 100 V lamp is to be connected to an A.C. mains of 200 V, 50 Hz. What capacitance is essential to be put in series with the lamp?

200 V, 50 Hz ए.सी.मेन्स से एक 50 वाट, 100 वोल्ट का लैम्प जोड़ा जाना है। लैम्प के श्रेणी क्रम में आवश्यक कितना संधारित्र जोड़ा जाना चाहिए ?

- (1) 3.2 µ F
- (2) 5.2 µ F
- (3) 7.2 µ F
- (4) 9.2 μ F
- **45.** The reactance of a inductance X_L in an A.C. circuit varies with frequency 'f' of the source voltage. Which one of the following represents this variation correctly?

प्रेरक X_L का प्रतिबाधा v.सी. परिपथ में आवृत्ति '!' के साथ परिवर्तित स्रोत विभव में होता है। निम्नलिखित में कौन-सा एक सही परिवर्तन निरूपित करता है ?

46. The total energy of the electron in the hydrogen atom in the ground state is - 13.6 eV. The kinetic energy of this electron is :

एक इलेक्ट्रान की हाइड्रोजन परमाणु में मूल अबस्था में कुल ऊर्जा - 13.6 eV है। इस इलेक्ट्रान की गतिज ऊर्जा है :

(x) 13.6 eV (2) 27.2 eV (3) 6.8 eV

(4) 3.4 eV

47. Tritium has a half - life of 12.5 years for β-decay. The fraction which will have decayed after 50 years :

β-क्षय में ट्रीटियम का अर्धआयु 12.5 वर्ष है। 50 वर्ष पश्चात् क्षय भाग होगा :

 $\{1\}$ 1/4

(2) 3/4

(3) 1/16

(4) 15/16

48. Pure Si at 300K has equal electron (n_e) and hole (n_p) concentrations of 1.5×10^{16} m⁻³. Dopping by indium increases (n_h) to 4.5×10^{22} m⁻³. Calculate n, in the doped Si:

(1) $5.0 \times 10^9 \text{ m}^{-3}$

(2) 5.5 × 10⁹ m⁻³

(3) $6 \times 10^9 \text{ m}^{-3}$

(4) 9 × 108 m⁻³

300K पर शुद्ध सिलिकन में बराबर इलेक्ट्रान (n) तथा होल (n) की सान्द्रता 1.5 × 1016 m 3 है। इण्डियम की डोपिंग के कारण (n,) वृद्धि हो जाती है 4.5 × 10²²m⁻³. डोप्ड सिलिकन में (n_e) की सान्द्रता क्या होंगी ?

(1) 5.0 × 10⁹ 申 -3

(2) 5.5 × 10⁹ मी-3

(3) 6×109 印3

(4) 9×10⁸ 印-3

49. The forbidden energy band gaps in conductors, semi-conductors & insulators are Eg,, Eg, & Eg, respectively. The relation among them is:

चालक, अर्धचालक और कुवालक में फारबिडेन ऊर्जा वैंड अन्तर क्रमशः Eg,, Eg तथा Eg है। इनके बींच का सम्बन्ध होगा :

(1) Eg, = Eg, = Eg,

(2) Eg, « Eg, « Eg,

(3) Eg, > Eg, > Eg,

(4) Eg, < Eg > Eg

50. What is the sum of two binary digits 10011 and 1001?

दो बाइनरी संख्या 10011 तथा 1001 का योग क्या होगा ?

(1) 11001

(2) 11100

(3) 11111 (4) 10111

:

Section - II

खण्ड – II

Chemistry

(Marks - 150)

51.	Whi	ch one among the following com	poun	ds is most easily sulphonated?
	(1)	Benzene	(2)	Toluene
	(3)	Chlorobenzene	(4)	Nitrobenzene
	निम्न है ?		ोन ब	हुत आसानी से सल्फोनीकृत होती
	(1)	बेंजीन	(2)	टॉलुइन
	(3)	क्लोरोबेन्जीन .	(4)	नाइट्रोबेन्जीन
52.	The	formation of cyanohydrin from	n a k	etone is an example of :
	(1)	Electrophilic addition	(2)	Nucleophilic addition
	(3)	Nucleophilic substitution	(4)	Electrophilic substitution
	कीट	ोन से सायनोहाइड्रिन बनने का उ	दाहर	ग है ः
		इलेक्ट्रानस्नेही योग	(2)	नाभिकस्नेही योग
	200	नामिकस्नेही प्रतिस्थापन	(4)	इलेक्ट्रानस्नेही प्रतिस्थापन
53.	An	S _k : reaction at an asymmetric	carbo	on of a compound always gives:
	(1)	an enantiomer of the substr		
	(2)	a mixture of diastereoisomer		
	(3)		cal ro	tation.
	(4)	a single stereoisomers		

	किर	नी यौगिक के असममित कार्बन	पर S	ु, अभिकिया हमेशा देती है :					
	(1)	पदार्थ का प्रतिबिम्ब रूप		• • September of the second section of the sec					
	(2)	अप्रतिबिम्ब द्वित्रिविमसंगावयवी	का	मेश्रण ः					
	(3) विपरीत प्रकाशिक घूर्णन के साथ एक उत्पाद								
	(4)	एकल त्रिविमसमावयवता							
54.	Wh	ich of the following compoun	ds ex	chibits stereoisomerism?					
	(1)	2 - methyl butene - 1							
	(2)	3 - methyl butyne - 1							
	(3)	3 - methyl butanoic acid							
	(4)	2 - methyl butanoic acid		¥1					
	निम्न	लिखित यौगिकों में से कौन त्रि	वेमसम	गवयवता को प्रदर्शित करता है ?					
		2 -मिथाइल ब्युटिन- 1		3 -मिथाइल ब्युटाइन- 1					
	(3)	3 -मिथाइल ब्युटानोइक अम्ल							
55.	Whe	n propyne is treated with aque	eous l	H ₂ SO ₄ in the presence of HgSO ₄					
	the i	major product is:							
	(1)	Propanal	(2)	Acetone					
	(3)	Propanol	(4)	Propyl hydrogen sulphate					
	जब प्र हैं तो	गेपाइन को जलीय H₂SO₄ के साथ बड़ी मात्रा में उत्पाद बनता है	HgS	्रकी उपस्थिति में उपचारित करते					
	(1)	प्रोपेनल	(2)	एसीटोन.					
퇤	(3)	प्रोपेनॉल -	(4)	प्रोपाइल हाइड्रोजन सल्फेट					
		22							

56.	. To distinguish between 1 - butyne and 2 - butyne, which of the									
	following reagents would you use?									
	(1)	H ₂ Lindler's catalyst	10 000000000	Dilute H ₂ SO ₄ , HgSO ₄						
	(3)	Bromine, CCl ₄	191	Ammoniacal Cu ₂ Cl ₂ solution						
	1 - र निम्न(ब्युटाइन और 2 - ब्युटाइन के लेखित में से आप कीन-सा र्आ	बीच मकर्मव	में अन्तर स्पष्ट करने के लिए, ह प्रयोग करेंगे ?						
	(1)	H ₂ लिन्डलरस का उत्प्रेरक	(2)	तनु H ₂ SO ₄ , HgSO ₄						
		बोमाइन, CCI,	(4)	अमोनियाकल Cu ₂ Cl ₂ विल्यन						
57.	7. A solution of (+) - 2 - chloro - 2 - phenylethane in toluene racemise slowly in the presence of a small amount of SbCl ₅ , due to the formatio of:									
	(1)	Carbocation	(2)	Carbanion						
	0.000	Carbene	(4)	Pree radical						
	(+) – ਸ਼ਾਕੀ	2 – क्लोरो – 2 – फिनाइलइथेन में मिलाने पर रेसिमाइस की प्र	के विल क्रिया	थन को टॉलुइन में SbCl _s की सूक्ष्म धीरे-धीरे बनने का कारण है ः						
		कार्बोधनायन	(2)	कार्बोऋणायन						
		कार्बीन		स्वतंत्र मूलक						
58	. Chlo	probenzene can be prepared	by re	acting aniline with :						
	(1)	Hydrochloric acid								
	(2)	Cuprous chloride								
	(3)	Chlorine in the presence of	anhy	drous aluminium chloride						
	(4).	Nitrous acid followed by he	ating	with outprous chleride						
	•	25	93	9						

	क्लोर	बिन्जीन तैयार किया जा सकता है,	एनिल	तीन का निम्न के साथ किया करा के :						
	(1)	हाइड्रोक्लोरिक अम्ल								
	(2)	2) क्युप्रस क्लोराइड								
	(3) एनहाइड्रस एल्युमिनियम क्लोराइड की उपस्थिति में क्लोरीन के साध									
9	(4)	नाइट्रस अम्ल के बाद क्युप्रस व		54 - 10 - 10 - 10 - 10 - 10 - 10 - 10 - 1						
			ide 1	reacts with tert - butanol, the						
	/	luct is:								
	(1)		(2)	t – butyl benzene						
((3)	t - butyl phenyl ether	(4)	Phenol						
7	जब ।	फिनायल मैग्नीशियम ब्रोमाइड टर्ट	-ब्यु	टानॉल के साथ अभिक्रिया करता है						
7	तो उ	त्पाद बनता है:	_	50 NR 201000 B						
(1)	बेन्जीन	(2)	टी-ब्युटिल बेन्जीन						
(3)	टी-ब्युटिल फिनायल ईथर	(4)	फीमोल						
60. A	mo	ng the following which one gi		nonitive in defende a la n						
		- pentanol	ves j							
		:		2 - pentanone						
. (-	3) 3	- pentanone	(4)	pentanal						
F	नेम्ना	लेखित में से कौन एक सकारात्म	क अ	भायडोफार्म टेस्ट देता है ?						
		1 – पेम्टानॉल	(2)	E 12						
(3	3) :	3 - पेन्टानोन	(4)	पेन्टानल ।						
e				67 90 8)						
61. W	hici but	n reagent among the following tane - 2 - one to propanoic ac	one	s would you use for conversion						
(1	1500 15W0	follen reagent	cia /							
(3	100	JOOU / Nat / tte	(2)	Fehling solution						
	, 1	mai/n	(4)	NaOH/I ₂ /H·						
		24								

	61	। – 2 – एक से प्रापनाइक र कौन एक अभिकर्मक आप		वाततः करम कालयामन्माला जः गे?
	(1)	टॉलेन अभिकर्मक	(2)	फेहलिंग विलयन
	(3)	NaOH/ NaI/H*	(4)	NaOH/I ₂ /H·
62 .	Benz	zoyl chloride is prepared	from benz	oic acid by :
		Cl ₂ , hv	(2)	SO ₂ Cl ₂
		SOCl ₂	(4)	Cl ₂ , H ₂ O
	बेन्जा	यिल क्लोराइड, तैया र किय	ाजाता है ब	न्जोइक अम्ल के साथ :
30	(1)	Cl ₂ , hv द्वारा	(2)	SO ₂ Cl ₂ द्वारा
	(3)	SOCI, ब्रा रा	(4)	Cl ₂ , H ₂ O द्वारा
63.	Ben	zamide on treatment wi	th POCl ₃ gi	ves:
		Aniline	(2)	Benzylamine
	(3)	Benzonitrile	(4)	Chlorobenzene
	बेन्ज	ामाइड के साथ POCI, की	अभिक्रिया	कराने पर देता है :
		एनिलिन	(2)	बेन्जाइलैमीन
	(3)	बेन्जोनाइट्राइल	(4)	क्लोरोबेन्जीन
64.	Whi	ich one among the follow	ving bases	is the strongest?
77 Y 15 W		Aniline	(2)	p - nitroaniline
	(3)	2000 CO. C.	LAY	Benzylamine
	निर	निकात क्षारों में से कौम	एक प्रबल ध	सार है ?़
	(1)	एनिसिन	(2)	p नामकारियमिकित
	131	मान्यानेयनिकान	(4)	
	- 10 M			

- 65. Which of the following compounds will not react with alcoholic KCN?
 - (1) Ethyl chloride

(2) Acetyl chloride

(3) Phenyl chloride

(4) Benzaldehyde

निम्नलिखित यौगिकों में से कौन-सा एल्कोइॉलिक KCN के साथ अभिक्रिया नहीं करेगा ?

- (1) इथाइल क्लोराइड
- (2) एसिटिल क्लोराइड
- (3) फिनाइल क्लोराइड
- (4) बेन्जल्डिहाइड
- 66. Aryl halides are less reactive towards nucleophilic substitution reactions as compared to alkyl halides due to:
 - (1) resonance stabilisation
 - (2) inductive effect
 - (3) formation of less stable carbocation
 - (4) longer carbon halogen bond

एरिल हैलाइड्स एल्किल हैलाइड्स की तुलना में नाभिकस्नेही प्रतिस्थापन अभिक्रिया की ओर कम क्रियाशील होता है, कारण है :

- (1) अनुनाद स्थिरीकरण
- (2) प्रेरक प्रभाव
- .(3) कम स्थिर कार्बनधनायन का बनना
- (4) कार्बन-हैलोजन का लम्बा बन्ध
- 67. Which of the following has the smallest heat of hydrogenation per mole?
 - (1) 1 butene
 - (2) cis 2 butene
 - (3) trans 2 butene
 - (4) 1, 3 butadiene

का रोजनीकरण की ऊष्मा
निम्नलिखित में से किसके पास प्रति मोल सबसे कम हाइड्रोजनीकरण की ऊष्मा
होती है ? (2) सिस - 2 - ब्युटेन
(1)
10) 21-4 - 2 - 33 .
decolourise alkaline KMnO, solution
68. Which of the following will decolourise alkaline KMnO, solution? िक्सिलिखित में से कीन एल्कज़ाइन KMnO, विलयन को रंगहीन कर देगा? िम्निलिखित में से कीन एल्कज़ाइन KMnO, विलयन को रंगहीन कर देगा?
- कीन एल्कनाइन KMIIO4 (पर)
निम्नालाखत न त का (2) C_2H_4 (3) C_3H_8 (4) CCI_4 (1) CH_4
(1)
69. Which of the following is smallest in size?
89. W. अपहार में सबसे छोटा है ?
69. Which of the first की की की का कार में सबसे छोटा है ? निम्नलिखित में से कीन आकार में सबसे छोटा है ? (4) Na*
निम्नलिखित म स प्राप्त (3) N ³⁻ (4) Na* (1) F (2) O ²⁻ (3) N ³⁻ (4) Na*
bonds between two carbon atoms in Cuo2
70. The number and type of bonds between two carbon atoms in CaC ₂
are:
(1) one σ and one π bond
(2) one σ and two π bonds
(3) one σ and one - half π bond
27
CaC₂में दो कार्बन परमाणुओं के मध्य बन्दा आ
(1) एक ज और एक म बन्ध (2) एक ज जन्ध
(1) एक व और एक म बन्ध (4) एक व अन्ध (3) एक व और एक-आध म बन्ध (4)
59

- 71. Electrolytic reduction of alumina to aluminium by Hall-Heroult process
 - (1) in the presence of NaCl
 - (2) in the presence of fluorite
 - (3) in the presence of cryolite which forms a melt with lower melting
 - (4) in the presence of cryolite which forms a melt with higher melting

एल्युमिना का एल्युमिनियम में विद्युत् अपघटन हाल-हेराउल्ट विधि द्वारा होता है : (1) NaCl की उपस्थिति में

- फ्लुओराइट की उपस्थिति में (2)
- (3) कायोलाइट की उपस्थिति में जो निम्न गलनांक के साथ पिघला देता है
- (4) क्रायोलाइट की उपस्थिति में जो उच्च गलनांक के साथ पिघला देता है
- 72. One mole of calcium phosphide on reaction with excess of water gives:

 - (2) two moles of phosphoric acid
 - (3) two moles of phosphine
 - (4) one mole of phosphorous pentoxide

कैल्स्यम फॉस्फेट का एक मोल जल की अधिकता के साथ अभिक्रिया करने पर देता है : फॉस्फीन का एक मोल

- (2) फॉस्फोरिक अम्ल का दो मोल
- (3) फॉस्फीन का दो मोल
- (4) फॉस्फोरस पेन्टाक्साइड का एक मोल
- 73. There is no S S bond in :

S-Sबन्ध में नहीं है :

(1) $S_2O_4^{2-}$ (2) $S_2O_3^{2-}$ (3) $S_2O_5^{2-}$ (4) S₂O₂²

(2) KMnO₄, purple

	*:			, Diack		(4)	Mn.O	, brown	•
o.		ज्ख होता	MnO है, ਚ	, KOH के त्पाद और	साथ संयु उसका र	a (e ==	तो एक	, ०१० स्था रंगीन वीरि	गैक का निर्माण
	ļ	(1)	K ₂ Mr	O, वैगर्म 4, कारम	t	(2)	KMnO ₄		
7	5 . S	pin	only :	magnetic	moment	of Hg ICol	SCN1 in		
	()	(g (<	Za(SCI √3	(5)	्ल घुम्बर √8	कीय क्षण में (3)	ही घूर्ण न √15	होता है (4)	: √24
76	gi	odiu ves	en mi	procipitat	of an ur e on boil	iknown an ling. The a	ion whei	n treated	with MgCl ₂
8	जर कर	म अ तते	नेता त है तो	ाणायन सो। उबालने पर	डे क्म लव : सफेद (ण के विलय भवक्षेप देता	न को Mg है। ऋणा	यन होता	थ अभिकिया
	(-)	S	U ₄ -	(2)	CO ₃ 2-	(3)	HCO;	(4)	NO;
77.	B (rea	OH ctio) ₃ + N n be n	аΩн	N. NDe) ₂ + Na [B the forwa			can this
	(1)			ddition of		-	ra Gnecc	101 7	
	(2)			ddition of)			
	(3)	by	the ac	ldition of	trans - 1	^4 O dial			
•	(4)	by	the ac	ldition of	Cis - 1,	2 - diol			
	5								

(1) K₂MnO₄, purple

(3) Mn₃O₄, black

B (OH)₃ + NaOH \longrightarrow NaBO₂ + Na [B(OH)₄]+H₂O इस अभिक्रिया को आगे की दिशा में कैसे बढ़ा सकते हैं ?

- (1) खोरेक्स के संयोजन द्वारा
- (2) Na₂ HPO₄के संयोजन द्वारा
- (3) ट्रान्स 1, 2 -डाइओल के संयोजन द्वारा
- (4) सिस 1, 2 डाइओल के संयोजन द्वारा

78. The types of bonds present in CuSO₄. 5H₂O are only:

- (1) electrovalent and covalent
- (2) electrovalent and coordinate covalent
- (3) electrovalent, covalent and coordinate covalent
- (4) covalent and coordinate covalent

CuSO₄. 5H₂O में बन्ध के प्रकार उपस्थित होते हैं, केवल :

- विद्युत् बन्ध और सहसंयोजक बन्ध
- (2) विद्युत् बन्ध और उपसहसंयोजक बन्ध
- (3) विद्युत् बन्ध, सहसंयोजक और उपसहसंयोजक बन्ध
- (4) सहसंयोजक और उपसहसंयोजक बन्ध

79. Among the following ones which one has the paramagnetic moment?

निम्नुलिखित में से कीन एक पैरामैग्नेटिक मोमेन्ट है ? (3) $[Fe (H_2O)_6]^{3^4}$ (4) $[Zn (H_2O)_6]^{2^4}$

- 80. The compound insoluble in acetic acid is:
 - (1) Calcium oxide

- (2) Calcium oxalate
- (3) Calcium hydroxide
- (4) Calcium carbonate

τ	रसिटिक एसिड में अघुलनशील यौगिक	5 है ∶	
	1) कैल्सियम ऑक्साइड		कैल्सियम ऑक्सलेट
((3) कैल्सियम हाइड्राक्साइङ	(4)	कैल्सियम कार्बोनेट
81. ′	The compound having tetrahedral	geor	netry is:
40	यौगिक जिनके पास चुतुष्फलकीय ज्या	मितीय	होती है :
	(1) [Ni (CN) ₄] ²⁻	(2)	
	(3) [Pd Cl ₄] ²⁻	(4)	[Ni Cl ₄] ²⁻
82.	A solution of Na ₂ SO ₄ is electro products at the cathode and anot	lysed de arc	using inert electrodes. The respectively:
	Na ₂ SO ₄ के विलयन को अक्रिय इलेक्ट्र जाता है। कैथोड और एनोड पर उत्प	गद व्र	ज् मश ः हैं :
	(1) H ₂ , O ₂ (2) O ₂ , H ₂	(3)	O_2 , Na (4) O_2 , SO_2
83.	The process used for extractive n	netall	urgy of magnesium is :
	(1) thermite reduction		self reduction
	(3) aqueous solution electrolysi	is (4)	molten salt electrolysis
	मैग्नीशियम के धातु निष्कर्षण के लि	ए विर्व	धे प्रयोग की जाती है :
	(1) धर्माइट उपचयन		e e
	(2) स्व उपचयन		
	(3) जलीय विलयन का विद्युत् अप	बट्य	
	(4) गिलित लवण का विद्युत् अपघट	्य	32
*2	10 EM		16
	3	1	

140/115/10(1)

84.	The	octet rule is	not v	alid for :					
	अष्ट	क नियम किस	म्के <u>ल</u> ि	ए बाध्य न	हीं है	?			
	(1)	NO	(2)	O2	(3) C	O ₂	(4)	H ₂ O
85.	Whi	ch of the follo	wing	has the r	nost s	stab	le +2 oxida	tion s	tate ?
1	निम्न	लिखित में से	किसवे	पास सब	से आ	धेक	+2 ऑक्सीव	त्रण ः	अवस्था है ?
	(1)		(2)	Fe	(3)			(4)	
86. 1	The	molecule whi	ch ha	ıs zero dip	юle п	om	ent is :		
		अणु के पास							
t	1)	CH ₂ Cl ₂	(3)	BF ₃	(3)	NI	°3 .	(4)	CIO ₃
87. 2	³Na :	is the more s	table	isoto pe of	Na.	Γhe	process by	which	
(1	1)	β- emission			(2)	β*	emission		
(3	3) 1	K - electron c	aptur	e	(4)	α-	emission		
सं जि	ोडिय 1सके	म का सबसे उ द्वारा ²⁴ Na का	मंचिक । क्षरण	स्थायी सम ग होता है	स्थिानि ?	के व	Na है, वह	कौन	सी विधि है
	n yeus	ः उत्सर्जन			(2)	β⁺	उत्सर्जन		
(3)	K	- इलेक्ट्रान ग्र	हण		(4)	α-3	उत्सर्जन		

88.	32 g of oxygen contains 6.023 × 10 ²³ molecules at NTP. How many sulphur atoms are contained in 32 g of sulphur under the same conditions?						
	32 g ऑक्सीजन NTP पर 6.023 × 10 ²³ के समान अवस्था में 32 g सल्फर कितन	अणु गार	ओं को सम्मिलित क्फर परमाणु र	ा कर खता	ता है। इ सी है ?		
	(1) 3.012×10^{23} (2)	2)	6.023×10^{23}				
	13 (T) 1 (T) (T) (T) (T) (T) (T) (T) (T)		2.0×10^{23}				
89 .	The mean kinetic energy of Hc is:	2)	same as that	of H ₂			
	(1)		half that of H				
8	He की गतिज ऊर्जा का अर्थ है :						
	(1) H ₂ का दुगुना (2)	H ₂ के समान				
	(3) H ₂ an चार गुना ((4)	H₂का ओधा				
90.	2 g of H ₂ diffuses out from a cont amount of O ₂ would diffuse from the under conditions?	aine cor	er in 10 minu ntainer in the s	tes. i ame	How much time unde.		
	एक पात्र से $2 ext{ g H}_2 10$ मिनट में विसरि समय में कितना O_2 पात्र से विसरित ह	रेत । ोगा	डोता है। स्मान ?	अवस	या में समान		
	(1) 0.5 g (2) 2 g	(3)	4 g	(4)	8 g		
91.	Urea is added to 1 litre of water becomes 0.001. What is amount of	ure	a added ?				
	एक लीटर जल में इतनी यूरिया मिलाते	हैं । राज्या	के उसका परिमा सक्क है ?	Ψ Λ	r, K, 0.001		
`.	हो जाता है। मिलाबी हुई यूरिया की म (1) 60 g। (2) 6 g	<u> </u>	0.6 g	(4)	0.06 g		

92. K_p/K_c for the	reaction CO +	$\frac{1}{2}$ $O_2 \rightleftharpoons CO_2$ is:	8
अभिक्रिया CO		0 ₂ के लिये K,/K, है	
(1) RT	(2) 1 √RT	(3) \sqrt{RT}	(4) 1
93. The pH of a so	lution containi	ng 0.1 M CH ₃ COOH OH और 0.1M HCI र	and 0.1M HCl is:
(1) 1	(2) 2		खताह, का pH है (4) 4
order of the rea	ituve stope which action is :)-1 = reactant concen ch does not pass thro	ough the origin, the
(1) zero	(2) one	(3) two	(4) three
यदि (a - x) ⁻¹ व t पर अभिकारक व से होकर नहीं गुः (1) शून्य	न सान्द्रता रखा य जरती, अभिक्रिया	ग्राफ खीचते हैं, जहाँ प धनात्मक ढलान पर है की कोटि है : (3) दो	और जो मूल केन्द्रक
95. The rate of a rea			
(1) exothermic (3) of zero heat	of reaction	(2) endothermi (4) any time ।ढ़ती है, अभिक्रिया है	c
 (1) ऊष्माक्षेपी (3) शून्य ऊष्मीय 		(2) ऊष्माक्रया ह (4) किसी भी स	*

- 96. How much will the potential of a hydrogen electrode change when its solution initially at pH = 0 is neutralised to pH = 7?
 - (1) increases by 0.059 V
- (2) decreases by 0.059 V
- (3) increases by 0.41 V
- (4) decreases by 0.41 V

हाइड्रोजन इलेक्ट्रोड का विभव कितना परिवर्तित होगा जब इसके विलयन का आरम्भिक pH = 0 से उदासीन होकर pH = 7 होता है ?

- 0.059 V तक वृद्धि कर सकता है
- (2) 0.059 V तक घट सकता है
- (3) 0.41 V तक वृद्धि कर सकता है
- (4) 0.41 V तक घट सकता है
- 97. The difference between heats of reaction at constant pressure and constant volume for the reaction :

 $2^{\circ}C_{6}H_{6}(l) + 15 O_{2}(g) \rightarrow 12 CO_{2}(g) + 6 H_{2}O(l)$ at 298 K in kJ is:

2 C₆H₆ (l) + 15 O₂ (g) → 12 CO₂ (g) + 6 H₂O(l) अभिक्रिया के लिए, एक निश्चित दाब और निश्चित आयतन के बीच 298 K पर ऊष्मीय अभिक्रिया में अन्तर kJ में है : (1) - 7.43 (2) + 3.72 (3) - 3.72

- (4) + 7.43
- 98. For a reaction both AH and TAS are positive. The reaction will occur spontaneously when:

एक अभिक्रिया के लिये ΔH और TΔS दोनों धनात्मक हैं। अभिक्रिया लगातार पायी जायेगी, जब :

(1) AH TAS (2) AH < TAS (3) AH > TAS (4) AH >>TAS

99. The number of Bravais lattices in a cubic crystal is:

एक घन क्रिस्टिल में ब्रैवीस जालियों की संख्या है :

(1) 1

(3) 7

(4) 14

100. Bragg's law is given by:

ब्रैग्स का निषम निम्न द्वारा प्रतिपादित किया गया है :

(1) $n\lambda = 2 \sin \theta$ (2) $n\lambda = 2d \sin \theta$ (3) $2d = n\lambda \sin \theta$ (4) $d = n\lambda \sin \theta$

Section - III

खण्ड - III

Biology

(Marks : 150)

	h of the follon the earth		g is the pro	ginate	or for the orig	gin o	f first liv	ring
	RNA		DNA	(3)	Protein	(4)	Lipid	
निम्न हुई १		र्वजन	कद्वारा प्रथ	म जीव	ाणु कोशिका की	उत्प	त्ति पृथ्वी	पुर
(1)	आर एन ए	(2)	डी एन ए	(3)	प्रोटीन	(4)	लिपिड	
102.ln w	hich of the f	ollowi	ing DNA is	not fo	und?			
(1)	Mitochondr			(2)	Nucleus			
(3)	Peroxysome	•		(4)	Chloroplast			
निम्न	में से किसमे	डि	एन ए नहीं	पाया	गता है ?			
(1)	माइटोकॉंड्रिया	ſ		(2)	न्यूक्लियस			
(3)	पेरौक्सिसो म			(4)	क्लोरोप्लास्ट			
103.For	nation of RN	A fro	m DNA tem	plate	is called :		9.	
(1)	Transition			(2)	Transcription	n		
(3)	Transfection	n		(4)	Translation			
डी ।	एन ए टेमप्लेट	. पर	आर एन ए	बर्नमे	की क्रियाको व	कहते	ह :	
(1)	ट्रॉजिसन			(2)			18	
(3)	ट्रॉस्प्लेग्स न		ä	(4)	द्रौसलसम	68		

104. Which of the following is not and its cell wall degrading enz	correctly matched for the organisms
(1) Bacteria - Lysozyme	(2) Plant cells - Cellulase
(3) Algae - Methylase	(4) Fungi - Chitinase
जीव एवं उसकी कोशिकामिति निम् से कौन सही सुमेलित नहीं है ?	नीकारक एन्जाइम के लिए निम्नलिखित में
 जीवाणु - लाइसोजाइम शैवाल - मिथाइलेज 	(2) पादप कोशिकाएँ - सेलुलेज(4) कवक - काइटिनेज
105. Who proposed for the first ti classifying living organisms?	me the "three domain" system for
' (1) R.H. Whittaker	(2) Carl Woose
(3) Bentham and Hooker	(4) Engler and Prantel
जीव-जंतु का वर्गीकरण ''तीन डोमेन	त" में सर्वप्रथम किसने क्रिया en ?
(1) आर. एच. व्हीटेकर	(2) कार्ल वुज
(3) वेन्थम और हूकर	(4) ऐन्गलर और प्रे ग्टल
106. Heterocyst is the site of:	\$0.000 miles
(1) CO ₂ fixation	(2) N ₂ - fixation
(3) Photosynthesis	(4) Starch Synthesis
हेटेरोसिस्ट स्थल (जगह) होता है :	According to the second
(1) CO₂ स्थिरीकरण के लिए	(2) N₂ स्थिरीकरण के लिए
(3) प्रकाशसंश्लेषण के लिए	(4) स्टार्च बनमे के लिए

107. What is the product of ph	notophospho	rylation?	超
(1) PGA (2) Al			(4) NAD
फोटोफॉस्फोरिलेशन का उत्पा	दक्या है ?		
(1) पीजीए (2) ए) एटी पी	(4) एन ए डी
108. The red rust of tea plants	s is caused b	oy:	
(1) Puccinia	(2	20 10 200 February 19 To 19	ros
(3) Prion	(4) Xanthom	onas
चाय के पौधों पर लाल की	ट का कारक	है : .	10
(1) पक्सीनिया	(2	e) सेफैल्यु रीस	
(3) પ્रিऑ न	(4) <i>जैन्योमोना</i>	स
109.In Funaria, meiotic divis	ion takes pl	ace in :	÷.
(1) protonemal cells		2) antherid	ium
(3) archegonium	(4	t) capsule	
<i>फ्यूनेरिया</i> में अर्छसूत्री विभ	ाजन कहाँ हो	ता है ?	
(1) प्रोटोनीमल कोशिका मे	ŧ (2) ए न्धी रिङि	यम में
(3) आर्कीगोनियम में		4) कैप्सूल में	75.
110. Which of the following i	s considered	as the mos	t primitive stele?
(1) Siphonostele		2) Protoste	le
(3) Eustele		(4) Dictyosi	
निम्नलिखित में से कौन स	नबसे आद्य रं	म समझी जात	ते हैं ?
		(3) सुरंब	(4) जालरंभ

(1) Lycopodium	(2) Adiantum
(3) Selaginella	(4) Dryopteris
विषमबीजाणुता किसमें पायी जातं	ते है ?
(1) <i>लाइकोपोडियम्</i> में	(2) <i>एडिएन्टम</i> में
(3) <i>सिलैजिनेला</i> में	(4) <i>ड्रायोप्टेरिस</i> में
112. The F ₂ genotypic ratio in a mo	onohybrid cross of pea is :
	पीढी का जीनोटाइपिक अनुपात होता है :
(1) 2:1	(2) 3:1
(3) 1:2:1	(4) 9:3:3:1
13. Isomorphic alternation of gene	rations is found in
(1) Funaria	(2) Riccia
(3) Rhizopus	(4) Ectocarpus
समरूपी पीढ़ियों का एकान्तरण वि	जिसमें पाया जाता है ?
 (1) फ्यूनेरिया में 	(2) रिकृसिया में
(3) <i>राइॅज़ोपस</i> में	(4) इक्टोकार्पस में
14.A well-known naturally occurring	no suvin is .
(1) 2, 4 - D	(2) IAA
(3) NAA	(4) Maleic hydrazide
भलीभाँति ज्ञात प्राकृतिक सप ते प	या जाने वाला अधिक ।
(I) 2, 4 - D	ा आग पाला आक्सिम ह . (2) IAA
(3) NAA	(²) मैलेइक हाइड्राज़ाइड

	hich one of the hycocyanin pi			elength	ns of light is	abso	rbed by the
) 420 nm			(3)	610 nm	(4)	660 nm
72.0	म्न में से कौन ?	एक प्र	काश-सरंग	फाइकोर	गयनिन वर्णक	द्वारा	प्रचुषित होता
{1) 420 नैनोमीर	द्र∙		(2)	540 नैनोमीट	र	None
(3) 6 <u>10 नैनोमी</u> र	:र		. (4)	660 नैनोमीट	τ	
116. A	zolla is an imp	ortant	source of	ſ:			
{1) Biopepticio	de		(2)	Insecticide		
(3) Biofertilize	r		(4)	Herbicide		
Q	<i>जोला</i> एक प्रमुख	स्रो त	ह :		×		
(1) बायोपेप्साइड	का		(2)	इनसेक्टीसाइड	ड का	
(3) बायोफर्टिलाइ	जर का	Ī.	(4)	हबीसाइड का	ſ	
117. '6	ladiblus' belo	ngs to	the family	y :			
{1) Liliaceae			(2)	Compositae		
(3) Iridaceae			(4)	Malvaceae		
13	लैडिओलस' कि	स कुल	से सम्बंधि	त है ?			
(1) लिलिएसी से	r		(2)	कम्पोजीटि से		
(3	इरीडेसी से		8	(4)	मालवेसी से		
118.T	he first produc	t of atı	nospheric	nitroge	en fixation in	legun	ninous pla nt
is					·		
Į:	I) NO ₂	*51		(3)	NH ₃		13
(3	3) NO3			(4)	glutamate		
					(S)		

¥.

फर्ल	ोदार पादपों में वायवीय नाइट्रोज	न के स्थि	रीकरण का पहला उत्पाद कौन-सा
है ?	?		
(1)	नाइट्राइट	(2)	अमोनिया
(3)	नाइट्रेट	(4)	ग्लुटामेट ,
119. A s	ingle gene affecting more th	an one	phenotype is called :
(1)	Pleiotropic	(2)	Auxotrophic
(3)	Azotrophic	(4)	Pleiotrophic
एक	जीन का एक से अधिक फीनो	टा इ प के	प्रभावित करना कहलाता है :
(1)	प्लीइयोट्रॉपिक	(2)	ऑक्सोट्रॉफिक
(3)	एज़ोट्रॉफिक	(4)	प्लीइयोट्रॉफिक
120. The	process of photosynthesis i	n green	plants is most active in :
(1)	ultra-violet light	(2)	green light
(3)	red light	(4)	yellow light
हरे	पौर्यो में प्रकाश-संश्लेषण की क्रि	या सबसे	अधिक किसमें सक्रिय होती है ?
(1)	अल्ट्रा-वायलेट प्रकाश में	(2)	हरे प्रकाश में
(3)	लाल प्रकाश में	(4)	पीले प्रकाश में
121. The	female gametoplyte in angi-	osperms	s is :
(1)	Carpel	(2)	Egg
(3)V	Embryo sac	(4)	Ovule
आवृ	तबीजी पौयों में कौन मादायुग्म	कोद्भिद्	होता है ?
(1)	अण्डप	(2)	अंडा
(3)	भ्रूणकोष	(4)	बीजाण्ड

122	. Pero	exisomes are associated with:		
	(1)	Photorespiration	(2)	Transpiration
	(3)	Fermentation '	(4)	Movement
	पेरावि	क्ससोम का सम्बन्ध किससे है ?		
	(1)	प्रकाश-श्वसन से	(2)	वाष्पोत्सर्जन से
	(3)	किण्वन से	(4)	गति से
123	3. Poto	ometer is used to measure the	rate	of:
	(1)	Plant growth	(2)	Respiration
	(3)	Photosynthesis	(4)	Transpiration
	पोटो	मिटर का उपयोग होता है, नापने	में :	
	(1)	पौधों में वृद्धि	(2)	श्वसन
	(3)	प्रकाशसंश्लेषण	(4)	वाष्पोत्सर्जन
12	4. Whi	ich of the following is not an a	untibi	otic ?
	(1)	Streptomycin	(2)	Chloromycetin
	(3)	Aflotoxin	(4)	Penicillin
	निम्	तिखित में से कीन प्रतिजैविक प	दार्थ	नहीं है ? 🕠
	(1)	स्ट्रेप्टोमाइसीन	(2)	फ्लो रोमाइसेटिन
	(3)	एफ्लोटॉक्सिन	(4)	पेनिसिलिन
12	5. 'Ju	mping gene' in maize was disc	over	ed by :
		T.H. Morgan	(2)	H.G. Khorana
	(3)	Barbara Mc Clintock	(4)	Beadle and Tatum

मव	्र के में 'जम्पिंग जीन' किसने खे	ोजा था	?
(1)	टी.एचं. मार्गन ने	(2)	एच. जी. खोराना ²
(3)	बारबार मैक् क्लीन्टॉक ने	(4)	बिडल और टेटम ने
126. Eu	glena is a member of kingdo	om :	
(1)	Monera	(2)	Protista
(3)	Aimalia	(4)	Plantae
युग	लीना, जगत का सदस्य है :	10	
(1)	मोनेरा	(2)	प्रोटिस्टा
(3)	ऐमेलिया	(4)	प्लान्टी ़
127. Ex	cretory organ found in cockr	oach is	:
(1)	Malpighian tubule	(2)	Metanephridia
(3)	Green gland	(4)	Solenocytes
तिर	नचट्टे में उत्सर्जी अंग पाये जाते	ते हैं :	
(1)	मैल्पीघियन टिब्युल	(2)	मेटानेफ्रीडिया
(3)	ग्रीन ग्रंथि	(4)	सोलेनोसाइट्स
128. Zoo	ological name of filaria worm	is :	
(1)	Taenia	(2)	Ancylostoma
(3)	Trypanosoma	(4)	Wuchereria
फाइ	लेरिया के कीटाणु का जन्तु वैइ	गनिक न	ाम है :
(1)	14.14.14.14.14.14.14.14.14.14.14.14.14.1	(2)	एनसाइलोस्टोमा
(3)	द्रिपैनोसोमा		<i>वृचेरेरिया</i>

129. Balanoglossus is an example of :

(1) Urochordates

(2) Hemichordates

(3) Molluses

(4) Cephalochordates

बैलेनोग्लॉसस एक उदाहरण है :

(1) युरोकार्डेट्स

(2) हेमीकाईंट्रस

(3) मोलस्क

(4) सीफैलोकाईंट्स

130. Which one of the following statements regarding chidarians is incorrect?

- (1) They are so called because they possess chidocytes in their body.
- (2) They exhibit ability to change their basic body forms by a process of metamorphosis.
- (3) The undergo metagenesis giving rise to polyp or medusoid body forms alternately or remains in any one of body forms in their life.
- (4) They exhibit tissue level of organization and are diploblastic.

निम्नलिखित में से कौन कथन निडेरियन के संदर्भ में गलत है ?

- (1) उसे निडेरिया इसलिये कहते हैं क्योंकि उनके शरीर में निडोसाइट कोशिकाएँ होती हैं।
- (2) वे कायान्तरण की विधि से अपने शरीर की आधारभूत स्वरूप की परिवर्तित करने की योग्यता प्रदर्शित करते हैं।
- (3) वे पालिप और मेडुसा शरीर स्वरूप को एकान्तर क्रम में देते हुए मेटाजेनेसिस को अनुभव कराते हैं या अपने जीवन मे एक ही शरीर स्वरूप में पड़े रहते हैं।
- (4) वे ऊतक स्तर के संगठन को प्रदर्शित करते हैं और द्विस्तरीय होते हैं।

131. In h	iuman beings, Taenia sõlium i	s four	nd in :
(1)	duodenum	(2)	large intestine
(3)	small intestine	(4)	rectum
मान	व में, टीनिया सोलियम पाया जात	ग है	:
(1)	ग्रहणी में	(2)	बड़ी आँत में
(3)	छोटी आँत में	(4)	मलाशय में
1 32 . Lee	ch is a blood sucking animal	nutrit	ionally, therefore leech is :
(1)	carnivorous	(2)	sanguivorous 24
(3)	herbivorous	(4)	omnivorous
पोष	ण के लिये जोंक रक्त चूषने वाल	ा न्तु	है, इसलिए जॉक है :
(1)	मांशाहारी	(2)	सैन्गुइवोरस(रक्तभोजी)
(3)	शाकाहारी	(4)	सर्वाहारी
133. Ver	tebrae in birds are :		88
(1)	heterocoelous .	(2)	acoelous
(3)	opisthocoelous	(4)	amphicoelous
चिहि	ड़ेयों में कशेरुकी होती हैं :		4 -60
(1)	भिन्नगुहीय	(2)	अगुहीय
(3)	पश्चगुहीय	(4)	उम्यगुहीय
134. Cub	ooid bone is associated with th	e str	ucture of :
(1)	Tarsus	(2)	Metatarsus
(3)	Carpus	(4)	Metacarpus

धनाकार अस्यि की संरचना से सम्बन्धित है :

गुल्फ (टासर्स)

(2) मेटाटार्सस

(3) कार्पस

(4) मेटाकार्पस

135. The sequence of blood flow from heart to gill in fish is :

- (1) Bulbus arteriosus →ventricle →atrium →sinus venosus →Gills
- Sinus venosus → atrium → ventricle → bulbus arteriosus → Gills
- (3) Atrium → ventricle → sinus venosus → bulbus arteriosus → Gills
- (4) Sinus venosus → right atrium → right ventricle → left artium →right atrium → Gills

मछिलियों में हृदय से गलफड़ों की ओर रक्त के बहाव का क्रम है :

- (1) बल्बस अटैरिओसस→ निलय →अलिन्द →साइनस वीनोसस → गलफडे
- साइनस विनोसस → अलिन्द → निलय → बल्बस अर्टेरिओसस → गलफडे (2)
- अलिन्द →निलय → साइनस विनोसस → बल्बस अटेरिओसस → गलफडे (3)
- साइनस वीनोसस →दायाँ अलिन्द →दायौँ निलय →बायाँ अलिन्द →दायाँ अलिन्द → गलफड़े

136.In mammalian kidney, podocytes are found in:

- (1) Proximal convoluted tubule (2) Distal convoluted tubule

(3) Glomerulus

(4) Collecting duct

स्तनधारी वृक्क में, पोडोसाइट पाये जाते हैं :

- (1) निकटस्य कुण्डलित नलिका में
- (2) दूरस्य कुण्डलित नलिका में

(3) न्होंनेक्सस में

(4) संग्रह महिल्का में

137.W	hich one of the respiratory pig	ment is	s found in oxygen transport in
(1) Haemoglobin	(2)	Haemerythrin
(3) Chloroctruorin	(4)	Haemocyanin
में	लिस्का में ऑक्सीजन परिवहन के वि	नये कीन	त-सा श् व सन रंगकणिका पायी जाती
है	?		
{1) हीमोग्लोबिन	(2)	हीमोइरिथ्रिन
{3	क्लोरोक्टुओरिन	(4)	हीमोसाइनिन
138.E	nzymes needed to digest food i	n the a	alimentary canal are :
(1) Kinases	(2)	Hydrolases
(3	3) Lyases	(4)	Isomerases
3	गहारनाल में भोजन के पाचन में उ	भावश्यव	क किण्वक हैं :
(1) काइनेसेस	(2)	हाइड्रोलेसेस
(3	3) लाइएसेस	(4)	ऑइसोमेरेसेस
	i biologic membranes, integral y:	protei	ins and lipids interact mainly
(1) hydrpphobic interactions	(2)	hydrogen bonding
(3	3) covalent bonds	(4)	ionic bonds .
	विक झिल्ली में, समाकलन प्रोटीन्स रती है :	और व	ासाएँ आपसी क्रियाएँ मुख्य रूप से
) जलरोधी अन्योन्य क्रियाओं द्वा	रा	(4) (3)
(2			
(3) सहसंयोजन बन्धों द्वा रा		
(4) आयनिक बन्धों द्वारा		*

14	O. The	process of transforma	tion of spe	ermatids into spermatozoa is
	(1)	spermatogenesis	(2)	spermatosis
	JOY	spermiation	(4)	spermeosis
	पूर्वः	शुकाणु का शुकाणु में कायान	तरण की वि	धि को कहते हैं:
	(1)	शुक्रकायान्तरण	(2)	स्पर्नेटोसिस
ý.	(3)	स्यर्मिएशन स्ट	(4)	स्पर्मियोसिस
14	1. As	a result of cleavage of the	zygote, th	e 8-16 cell embryo is called :
	(1)	blastomere	(2)	morula
	(3)	blastocyst	. (4)	trophoblast
	युग्म	नज के विदल्न स्वरूप 8-1	6 कोशायुक्त	भूण को कहते हैं:
	(1)	ब्लास्टोमीयर	(2)	मार्खला
	(3)	ब्लास्टोसिस्ट	(4)	द्रो फोब् लास्ट
14	2.The	expanded form of the dis	sease AIDS	is:
	(1)	Acquired Immune Defic	iency Syn	drome
	(2)	Acquired Inner Deficien	icy Syndro	me
	(3)	Acquired Inner Deficien	cy System	
	(4)	Acquired Immune Defic	iency Syst	em
	ΑII	DS रोग का विस्तृत रूप है	:	•
	(1)	एक्दायर्ड इम्यून डिफिसियेन	सी सिन्ड्रोम	
	(2)	एक्वायर्ड इनर डिफिसियेन्स	ी सिन्ड्रोम	
	(3)	एक्वायर्ड इनर डिफिसियेन्स	ी सिस्टम	
	(4)	एक्वायर्ड इम्यून डिफिसियेन	सी सिस्टम	

1 43. Ch	romosomal theory of inheritar	ice wa	s given by :
(1)	Gregor Mendel	(2)	Hugo De Vries
(3)	Sutton and Boveri	(4)	Correns and Von Tschermak
आ	नुवांशिकी का गुणसूत्री सिद्धान्त वि	देया गय	गथाः ः
(1)	ग्रेगर मेन्डल द्वारा	(2)	हयुगो डी ब्रीजःद्वारा
(3)	सट्टन और बोवेरी द्वारा	(4)	कोरेन्स और वान सेरमैक द्वारा
144.Ce	ntral dogma in molecular l	biology	y suggests that the genetic
ini	formation flows from :		
(1)	RNA →DNA →Protein	(2)	DNA →RNA →Protein
(3)	Protein →RNA →DNA	(4)	Protein → DNA → RNA
	ण्विक जीवविज्ञान में मूल सिद्धान्त ग्रह होता है :	सुझाव	देता है कि आनुवांशिक सूचना का
(1)	RNA →DNA →प्रोटीन	(2)	DNA →RNA →प्रोटीन
(3)	प्रोटीन→RNA →DNA	(4)	प्रोटीन → DNA → RNA
1 45. hn	RNA is converted into mRNA	by a p	rocess called :
(1)	Editing	(2)	Transformation
(3)	Replication	(4)	Splicing
hn	RNA एक विधि द्वारा mRNA में	बदलता	है, कहते हैं :
(1)	सम्पादन करना	(2)	रूपान्तरण
(3)	द्विगुणन	(4)	स्प्लाइसिंग

	(1)	Pyruvate	(2)	Acetyl	l CoA		
	Jar	Lactate		(4)	Glycog	gen	
	इरिध्रोसाइट कोशिका में ग्लाइकोलाइसिस का अंतिम उत्पाद है :						
	(1)	(1) पाइसवेट			(2) एसिटिल कोएन्जाइम,ए		
	(3)	लैक्टेट -		(4)	ग्लाइको	जन	
147. According to Landsteiner's law, the person with blood group A will							
have one of the following agglutinogen; agglutinin combinations:							
		Aα		(2)	Aβ		
	(3)	A with no a	or β	(4)	A with	αβ	
	लैण्डस्टीनर के नियमानुसार, A रक्त समूह वाले व्यक्ति में निम्नलिखित में से एक संयोजन समूह एग्लूटिनोजन : एग्लूटिनिन होगा :						
	(1)	Aα		(2)	Aβ		
	(3)	A के साथ α	या βनहीं	(4)	A को सा	य $\alpha \beta$	
148. After analysis of a DNA sample, the mole percent of base 'A' was							
	found to be 20. Following the Chargaff's rule, the mole percent of						
	base cytosine will be:						
DNA नमूना के अध्ययन के बाद 'A' क्षार का मोल प्रतिशत 20 पाया गया था।							
	निम्नलिखित चारगैफ नियम के अनुसार साइटोसिन क्षार का मोल प्रतिशत होगा :						
	(1)	10	(2) 20	126	30	(4) 40	
					•		

146. End product of glycolysis in erythrocytes is:

149. Which of the radioisotopes was used to label T2 Phage DNA in Hershey-Chase experiment to prove DNA as genetic material?

DNA को आनुवांशिक पदार्थ सिद्ध करने के लिये हर्से-चेज प्रयोग में T2 फेज DNA को नामित करने के लिये कौन-सा रेडियोआइसोटोप प्रयोग किया गया था ?

- (1) ³H
- (2) 12C
- (3) 35S

150. In quite condition, expiration is caused by :

- (1) Contraction of expiratory muscles
- (2) Relaxation of inspiratory muscles
 - (3) Contraction of inspiratory muscles
 - (4) Relaxation of expiratory muscles

सामान्य परिस्थिति में, उच्छ्वशन का कारण होता है :

- (1) उच्छ्वासित पेशियों का सिकुड़ना
- (2) अन्तःश्वासित पेशियों का विश्राम
- (3) अन्तःश्वासित पेशियों का सिकुड़ना
- (4) उच्छ्वासित पेशियों का विश्राम

.....

अभ्यर्थियों के लिए निर्देश

(इस पुस्तिका के प्रवस आवरण पृष्ठ पर तवा उत्तर-पत्र के दोनों वृष्टों पर केवल नीली-काली बाल-प्वाइंट पेन से ही लिखें)

- प्रश्न पुस्तिका मिलने के 10 मिनट के अन्दर ही देख लें कि प्रश्नपत्र में सभी पृष्ठ मौजूद हैं और कोई प्रश्न छूटा नहीं है। पुस्तिका दोषयुक्त पाये जाने पर इसकी सूचना तत्काल कक्ष-निरीक्षक को देकर सम्पूर्ण 1. प्रश्नपत्र की दूसरी पुस्तिका प्राप्त कर लें।
- परीक्षा भवन में लिफाफा रहित प्रवेश-पत्र के अतिरिक्त, लिखा या सादा कोई भी खुला कागज साथ 2. में न लायें।
- उत्तर-पत्र अलग से दिया गया है। इसे न तो मोड़ें और न ही विकृत करें। दूसरा उत्तर-पत्र नहीं दिया जायेगा। 3. केवल उत्तर-पत्र का ही मूल्यांकन किया वायेगा।
- अपना अनुक्रमांक तथा उत्तर-पत्र का क्रमांक प्रथम आवरण-पृष्ठ पर पेन से निर्धारित स्थान पर लिखें।
- उत्तर-यत्र के प्रथम पृष्ठ पर पेन से अपना अनुक्रमांक निर्मारित स्थान पर लिखें तथा नीचे दिवे वृत्तों को 4. गाड़ा कर हैं। जहाँ-जड़ाँ आवश्यक हो वहाँ प्रश्न-पुस्तिका का क्रमांक तथा सेट का नम्बर उचित स्थानों 5.
- ओ० एम० आर० यत्र वर अनुक्रमांक संख्या, प्रजनपुरितका संख्या व सेट संख्या (वदि कोई हो) तथा प्रश्नपुर्तिका पर अनुक्रमांक और ओ० एम० आर० पत्र संख्या की प्रविश्विमों में उपरिलेखन की अनुमति 6. नहीं है।
- उपर्वक्त प्रविष्टियों में कोई भी परिवर्तन कहा निरीक्षक द्वारा प्रमाणित होना चाहिये अन्यवा यह एक अनुचित 7. सायन का प्रयोग भारा जायेगा।
- प्रश्न-पुश्तिका में प्रत्येक प्रश्न के बार वैकल्पिक उत्तर दिये गर्व हैं। प्रत्येक प्रश्न के वैकल्पिक उत्तर के लिए आपको उत्तर-पत्र की सम्बन्धित पंक्ति के सामने दिवे गये वृत्त को उत्तर-पत्र के प्रथम पृष्ठ पर दिवे गये 8. निर्देशों के अनुसार पेष से गाड़ा करना है।
- प्रत्येक प्रश्न के उत्तर के लिए केवल एक ही वृत को गाढ़ा करें। एक से अधिक वृत्तों को गाढ़ा करने 9. पर अथवा एक वृत्त को अपूर्ण घरने पर वह उत्तर गलत माना जायेगा।
- स्यान दें कि एक बार स्थाही द्वारा अंकित उत्तर बदला नहीं जा सकता है। यदि आप किसी प्रश्न का उत्तर नहीं देना बाहते हैं, तो संबंधित पंक्ति के सामने दिने गने सभी वृत्तों को खाली छोड़ दें। ऐसे प्रश्नों पर शून्य 10. अंक दिये जायेंगे।
- रफ कार्य के लिए प्रश्न-पुस्तिका के मुखपृष्ठ के अंदर बाला पृष्ठ तथा उत्तर-पुस्तिका के अंतिम पृष्ठ 11. का प्रयोग करें।
- परीक्षा के उपरान्त केवल औ एम आर उत्तर-पत्र परीक्षा भवन में जमा कर दें। 12.
- परीक्षा समाप्त होने से पहले परीक्षा भवन से बाहर जाने की अनुमति नहीं होगी। 13.
- यदि कोई अभ्यर्थी परीक्षा में अनुचित साधनों का प्रयोग करता है, तो वह विश्वविद्यालय द्वारा निर्धारित 14. दंड का/की, भागी होगा/होगी।